Uniform Hardness Amplification in NP via Monotone Codes

نویسندگان

  • Joshua Buresh-Oppenheim
  • Valentine Kabanets
  • Rahul Santhanam
چکیده

We consider the problem of amplifying uniform average-case hardness of languages in NP, where hardness is with respect to BPP algorithms. We introduce the notion of monotone errorcorrecting codes, and show that hardness amplification for NP is essentially equivalent to constructing efficiently locally encodable and locally list-decodable monotone codes. The previous hardness amplification results for NP [Tre03, Tre05] focused on giving a direct construction of some locally encodable/decodable monotone codes, running into the problem of large amounts of nonuniformity used by the decoding algorithm. In contrast, we propose the indirect approach to constructing locally encodable/decodable monotone codes, combining the uniform Direct Product Lemma of [IJK06] and arbitrary, not necessarily locally encodable, monotone codes. The latter codes have fewer restrictions, and so may be easier to construct. We study what parameters are achievable by monotone codes in general, giving negative and positive results. We present two constructions of monotone codes. Our first code is a uniquely decodable code based on the Majority function, and has an efficient decoding algorithm. Our second code is combinatorially list-decodable, but we do not have an efficient decoding algorithm. In conjunction with an appropriate Direct Product Lemma, our first code yields uniform hardness amplification for NP from inverse polynomial to constant average-case hardness. Our second code, even with a brute-force decoding algorithm, yields further hardness amplification to 1/2− log n. Together, these give an alternative proof of Trevisan’s result [Tre03, Tre05]. Getting any non-brute-force decoding algorithm for our second code would imply improved parameters for the problem of hardness amplification in NP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Hardness Amplification via Local GMD Decoding

We study the average-case hardness of the class NP against deterministic polynomial time algorithms. We prove that there exists some constant μ > 0 such that if there is some language in NP for which no deterministic polynomial time algorithm can decide L correctly on a 1 − (log n)−μ fraction of inputs of length n, then there is a language L′ in NP for which no deterministic polynomial time alg...

متن کامل

Lower Bounds and Hardness Amplification for Learning Shallow Monotone Formulas

Much work has been done on learning various classes of “simple” monotone functions under the uniform distribution. In this paper we give the first unconditional lower bounds for learning problems of this sort by showing that polynomial-time algorithms cannot learn constant-depth monotone Boolean formulas under the uniform distribution in the well-studied Statistical Query model. Using a recent ...

متن کامل

Correlation Bounds Against Monotone NC

This paper gives the first correlation bounds under product distributions (including the uniform distribution) against the class mNC of poly(n)-size O(log n)-depth monotone circuits. Our main theorem, proved using the pathset complexity framework recently introduced in [56], shows that the average-case k-CYCLE problem (on Erdős-Rényi random graphs with an appropriate edge density) is 12 + 1 pol...

متن کامل

Spatial Codes and the Hardness of String Folding Problems ( Extended

(Extended Abstract) Ashwin Nayak Alistair Sinclair y Uri Zwick z Abstract We present the rst proof of NP-hardness (under randomized polynomial time reductions) for string folding problems over a nite alphabet. All previous such intractability results have required an unbounded alphabet size. These problems correspond to the protein folding problem in variants of the hydrophobic-hydrophilic (or ...

متن کامل

Spatial Codes and the Hardness of String Folding Problems (Extended Abstract)

(Extended Abstract) Ashwin Nayak Alistair Sinclair y Uri Zwick z Abstract We present the rst proof of NP-hardness (under randomized polynomial time reductions) for string folding problems over a nite alphabet. All previous such intractability results have required an unbounded alphabet size. These problems correspond to the protein folding problem in variants of the hydrophobic-hydrophilic (or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2006